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1. Introduction

We continue the program begun in [1] of using the AdS/CFT correspondence [2 – 4] to

model the energy dissipation of a heavy quark moving through a plasma.1 Damping of

heavy quarks is interesting experimentally for understanding charm and bottom physics

at RHIC [10 – 12]. The traditional field theoretic approach to the problem is perturbative,

assuming that the quark interacts weakly with the surrounding plasma via two-body col-

lisions with thermal quarks and gluons and via gluon bremsstrahlung (see [1] for a list of

relevant papers). AdS/CFT provides a dual model where one can calculate the energy dis-

sipation at strong coupling, a regime potentially more interesting for RHIC physics where

the effective αs is believed to be of order one.

A direct comparison of AdS/CFT and RHIC data is fraught with difficulty. The

essential problem is that AdS/CFT does not provide a dual model of QCD with three

flavors. Instead, the original correspondence provides a duality between the maximally

supersymmetric N = 4 SU(N) Yang-Mills theory and type IIB string theory in a AdS5×S5

background. String theory in curved space is not under good theoretical control, but in

1Recently, several other papers discussing quark damping from other AdS/CFT perspectives have ap-

peared [5 – 9].
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the limit N → ∞ and of large ’t Hooft coupling λ = g2
YMN , the string theory is well

approximated by classical supergravity, and strong coupling calculations on the Yang-Mills

side reduce to classical calculations in general relativity.

Since the introduction of the original AdS/CFT correspondence, a number of general-

izations have been made, some of which are relevant for our discussion. By adding a black

hole to the supergravity description, the field theory is raised to a finite temperature [13]

dual to the Hawking temperature of the black hole. By introducing black holes spinning in

the S5 direction, the field theory is raised to a finite chemical potential associated to the

R-charges of the supersymmetry algebra [14 – 18]. More recently, [19] argued that adding

D7-branes to the geometry was dual to adding flavor hypermultiplets to the gauge theory.

The result of these refinements is a strongly coupled field theory in the large N and

λ limit with N = 2 supersymmetry, a field theory with markedly different field content

and interactions than three flavor N = 3 QCD. Nevertheless, at finite temperature, the

theories may not be so different. For example, the pressure divided by the free Stefan-

Boltzmann limit (which effectively just counts the number of degrees of freedom) in N = 4

SYM is remarkably close to the corresponding ratio in QCD at temperatures of a few

times Tc where it is strongly coupled [20]. The dimensionless ratio of viscosity divided by

entropy density equals 1/4π in N = 4 SYM, as well as in all other theories with gravity

duals [21, 22] in the strong ’t Hooft coupling limit. And this value, which is lower than

any weakly coupled theory or known material substance [23], is in good agreement with

hydrodynamic modeling of RHIC collisions [24, 25].

Although one could introduce a chemical potential for heavy quarks, a U(1)R potential

is a better way of capturing effects analogous to a light quark chemical potential. For heavy

quarks, introducing a baryon number chemical potential in the AdS/CFT context would

mean introducing a macroscopic density of heavy quark baryons. More physically relevant

is a situation with a few heavy quark probes moving through a soup with a density of

ordinary baryons made up of lighter quarks.

The lesson we draw from the successful comparisons of pressure and viscosity is that we

should try to search out dimensionless ratios and also universal features of dual AdS/CFT

models. To this end, we take a more general perspective than in [1] where attention

was restricted to the dual model of finite temperature N = 4 SYM with one N = 2

hypermultiplet. We consider a general form for the metric of the gravity dual which has

a horizon, is asymptotically AdSd+1 and preserves Poincare invariance on the boundary.

Such a metric includes the finite temperature, zero chemical potential case studied in [1]

as well as the finite U(1)R chemical potential case mentioned above. Such a metric ought

also to include a number of relevant deformations of SYM, and other more speculative

AdS/CFT correspondences in dimensions d 6= 4.

To this d + 1 dimensional metric, we assume a flavor brane can be added as in [19].

This flavor brane should fill all of the asymptotically AdSd+1 space down to some minimal

radius u = u0. There will in general be a nontrivial relation between the radius u0 and

the Lagrangian mass m of the quark. We model our heavy quark as a classical string that

stretches from the flavor brane to the horizon of the black hole. The rest mass Mrest of the

quark is the energy of a straight, motionless string stretching from u = u0 to the horizon

– 2 –
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u = uh and will in general be related in a nontrivial way to both m and uh. In the limit

u0 becomes large compared to the other scales in the problem,2 Mrest and m scale linearly

with u0.

There is a substantial amount of interesting physics in the relation between u0, m,

and Mrest which we will for the most part ignore in this paper. It is known that in the

case dual to N = 4 SYM at finite temperature and R-charge chemical potential, there is a

first order phase transition as u0 is lowered toward the horizon. For example, in the case

of finite temperature and zero potential, at a value u0/uh ≈ 1.02, the flavor brane jumps

to a configuration where it intersects the horizon [26 – 29]. A similar jump occurs at finite

potential [30] and perhaps may happen more generally. There are two lessons to keep in

mind. One is that in the limit where the radius of curvature L of AdS is kept large, the

string will remain classical down to the phase transition point. The second is that the

configuration u0 = uh is likely unstable.

Although our approach is more general, the tools we use to measure energy dissipation

of a heavy quark are similar to [1]. The goal is to calculate the friction coefficient µ in the

equation
dP

dt
= −µP , (1.1)

where P is the quark momentum. In section 3, we revisit the analytic solution of a string

moving at constant velocity v. Such a string is dual to a quark in an external electric field,

and we are able to extract the amount of momentum and energy the field must supply

to keep the quark in motion. In section 4, we revisit the linearized, quasinormal mode

analysis of the string equation of motion. The quasinormal modes give information about

the return to equilibrium of the string after small perturbations, and thus tell us about µ

in the small v limit. In section 5, we consider a specific example, the R-charge black hole

dual to the SYM field theory at finite temperature and U(1)R chemical potential.

Saving the details for the body of the paper, we make three interesting observations

about our results. The first concerns the small v limit of µ. Both the analytic, constant

velocity solution and the quasinormal mode analysis confirm that for all the cases consid-

ered

µMkin =
(4GNs)

2/(d−1)

2πα′
(1.2)

where 1/(2πα′) is the string tension, GN is Newton’s constant, and s is the entropy density.

We have introduced a new mass, Mkin, the kinetic mass which enters into the dispersion

relation for the quark. In the large u0 limit, we expect Mkin ∼ Mrest. In the case of

asymptotically AdS5 geometries, the dual field theory should be a variation of N = 4

SU(N) super Yang-Mills. In this case GN = πL3/2N2 where N is the number of colors

in the associated SU(N) field theory. Also, L2/α′ =
√
λ where λ = g2

YMN is the ’t Hooft

coupling. We find that in this case, (1.2) becomes

µMkin =
√
λ

(
s2

2πN4

)1/3

. (1.3)

2At the very least, u0 À uh, but in general there may be other scales.
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The second observation concerns the small u0 limit. Although the flavor brane with

u0 ≈ uh is probably not stable, and a string stretching from such a flavor brane to the hori-

zon is more quantum than classical, it is nevertheless possible to analyze the quasinormal

mode problem formally in this limit:

µ = 2πT . (1.4)

Moreover, in the R-charge black hole case analyzed in section 5, µ is a monotone decreasing

function of u0, leading us to speculate that µ is always bounded above by 2πT in the non-

relativistic regime.

The last observation concerns the velocity dependence of µ. In [1], limited evidence

supported the claim that the heavy quark obeys a relativistic dispersion relation

E(P ) = Mrest −Mkin +
√
P 2 +M2

kin . (1.5)

Moreover, in [1], the friction coefficient µ was velocity independent. Assuming that the

same dispersion relation holds in the case of finite chemical potential studied in section 5,

we are able to extract µMkin from the constant velocity solution of section 3. Our results

indicate that µ has a strong velocity dependence, increasing as v increases. Notably, the

perturbative calculations of quark damping also have a nontrivial velocity dependence (see

for example [31]).

2. The equations of motion

We assume a metric of the form

ds2 = gttdt
2 + guudu

2 + gxxδijdx
idxj , (2.1)

where i = 1, 2, . . . , d − 1. As u → ∞, the metric should approach that of AdSd+1 with a

radius of curvature L:

gtt → −L2u2 ; guu →
L2

u2
; gxx → L2u2 . (2.2)

The space is also assumed to have a horizon at u = uh:

gtt = (u− uh)∂ugtt(uh) + · · · ; guu = (u− uh)∂ug
uu(uh) + · · · . (2.3)

The metric component gxx is assumed to be finite at u = uh. Finally, we assume that

the metric components gtt, guu, and gxx depend only on the radial coordinate u. As a

shorthand, we will take ∂uf = f ′ and ∂tf = ḟ .

As discussed in the Introduction, this metric includes as special cases a wide variety

of space-times dual, via the AdS/CFT correspondence, to strongly coupled field theories.

Some examples are finite temperature N = 4 SU(N) SYM in d = 4 dimensions discussed

in [1], the same finite temperature SYM at finite R-charge chemical potential to be discussed
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in section 5, various relevant deformations of SYM, and other more speculative AdS/CFT

correspondences in d 6= 4.3

The Hawking temperature of this black hole space-time, dual via the AdS/CFT dic-

tionary to the temperature of the field theory, can be computed by checking that the

Euclidean continuation of the metric is regular at u = uh. In this case, we find that

T =

√
−(gtt)′(guu)′

4π

∣∣∣∣∣
u=uh

. (2.4)

The entropy density of the field theory, proportional to the area of the black hole, is

s =
(gxx)(d−1)/2

4GN

∣∣∣∣∣
u=uh

. (2.5)

We model a quark in the field theory as a classical string in the dual space-time. We

derive the equations of motion for the string from the Nambu-Goto action

S = − 1

2πα′

∫
dσ dτ

√
−G (2.6)

where Gab is the induced metric on the string world-sheet. We take a static gauge where

t = τ , u = σ, and the string only extends in one direction x(σ, τ). Defining X = (t, u, x)

and U · V = UµV νgµν where gµν is the space-time metric, we find

−G = (Ẋ ·X ′)2 − (X ′)2(Ẋ)2

= −guugtt − gxxgtt(x′)2 − guugxxẋ2 . (2.7)

The equation of motion is a partial differential equation:

∂u
−gxxgttx′√
−G

− guugxx∂t
ẋ√
−G

= 0 . (2.8)

Recall that the canonical momentum densities associated to the string are

π0
µ = − 1

2πα′
gµν

(Ẋ ·X ′)(Xν)′ − (X ′)2(Ẋν)√
−G , (2.9)

π1
µ = − 1

2πα′
gµν

(Ẋ ·X ′)(Ẋν)− (Ẋ)2(Xν)′√
−G . (2.10)

For our string, these expressions reduce to



π0
x π

1
x

π0
u π

1
u

π0
t π

1
t


 =

1

2πα′
1√
−G




gxxguuẋ gxxgttx
′

−guugxxẋx′ guu(gtt + gxxẋ
2)

gtt(guu + gxx(x′)2) −gttgxxẋx′


 . (2.11)

3We are assuming any space transverse to the asymptotically AdSd+1 geometry decouples from our

probe string calculation. Ideally, we would like to know how our string configuration uplifts to ten or eleven

dimensional supergravity.
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There is a simple time independent solution to (2.8), namely x = A where A is a

constant and the string stretches from a D7-brane at u = u0 to the horizon at u = uh.

Let’s calculate the total energy of such a configuration:

E = −
∫ u0

uh

π0
t du =

1

2πα′

∫ u0

uh

√−gttguu du . (2.12)

This energy is naturally associated with the rest mass of the quark E ≡Mrest. If we take

u0 →∞, there is a divergence associated to this integral. The limit u0 → uh, on the other

hand, is finite. Assuming gtt and guu are well behaved in between, we may conclude that

as u0 →∞,

Mrest → u0L
2/(2πα′) . (2.13)

3. An analytic, time dependent solution

Assuming ∂tx = v with v a constant, we will find an analytic solution of (2.8) dual to a

single quark moving in an electric field E . The equation of motion reduces in this case to

∂u
−gxxgttx′√
−G = 0 (3.1)

where

−G = −guugtt − gxxgtt(x′)2 − guugxxv2 . (3.2)

Integrating once with respect to u, (3.1) transforms into

x′ =

√
−G

−gxxgtt
C (3.3)

where C is the constant of integration. Solving now for x′ yields

(x′)2 = − guuC
2(gtt + gxxv

2)

gxxgtt(gxxgtt + C2)
. (3.4)

With these results for x′ and ẋ in hand, we return to the canonical momentum densi-

ties (2.11), finding

π1
x = − 1

2πα′
C ; π1

t =
1

2πα′
vC . (3.5)

If we have an open string, then this string will gain energy and momentum through an

endpoint u0 at a rate

dE

dt
= π1

t

∣∣
u=u0

=
1

2πα′
Cv ,

dP

dt
= −π1

x

∣∣
u=u0

=
1

2πα′
C . (3.6)

and lose an equivalent amount of P and E at the other endpoint.4

4We would like to thank C. Kozcaz, who independently obtained (3.6), for collaboration in the early

stages of this project.
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Let’s specialize to the case where we have a string that stretches from the D-brane at

u = u0 to the horizon u = uh. Such a string can be thought of as a single quark moving

in an electric field with strength π1
x = −E . The electric field comes from the U(1) gauge

field living on the D-brane and has nothing to do with the SU(N) gauge field of the field

theory dual. This E feeds energy and momentum into the string at a rate given by (3.6)

sufficient to keep the string moving at a constant velocity.

In order for the string to stretch from u0 to uh, C has to satisfy a special condition.

We know generically that gtt has a zero at u = uh from which we can conclude that for

small v, gtt + gxxv
2 has a zero for some u = uc > uh. Thus in order for (x′)2 and

√
−G to

be well defined along the length of the string, the factor in the denominator gxxgtt + C2

must have a zero at the same location u = uc. In general an explicit expression for uc and

C may be difficult to find.

Let us assume, for simplicity, that v is small. In that case, we can find an approximate

expression for uc:

uc = uh −
v2gxx
(gtt)′

∣∣∣∣
u=uh

+O(v4) . (3.7)

From this approximation, we find that

C = vgxx(uh)
(
1 +O(v2)

)
. (3.8)

Thus, putting (3.6) and (3.8) together, we find that

dP

dt
= − 1

2πα′
vgxx(uh)

(
1 +O(v2)

)
. (3.9)

4. Linear analysis

In this section we analyze small perturbations of a straight string which stretches from

u = u0 to u = uh. This analysis allows us to investigate the friction coefficient µ in the

non-relativistic limit for any quark rest mass Mrest.

Let’s look for a solution to (2.8) where −G ≈ −guugtt. Let us also assume a time

dependence of the solution that exhibits exponential damping: ẋ = −µx. With these two

assumptions, the equations of motion become

√−gttguu
gxx

∂u
√−gttguugxxx′ = µ2x . (4.1)

We are interested in solutions x with standard D-brane boundary conditions, i.e. Neumann

boundary conditions at a radius u = u0. Because of the absorptive nature of the black

hole, we take “out-going” boundary conditions at the horizon u = uh [32]. To explain

“out-going”, consider the solution to (4.1) close to the horizon. Near u = uh, (4.1) takes

the approximate form

(4πT )2(u− uh)∂u(u− uh)x′ = µ2x , (4.2)

which has the two solutions

x = c1(u− uh)γ + c2(u− uh)−γ , (4.3)

– 7 –
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where

γ =
µ

4πT
. (4.4)

Out-going boundary conditions means we take c1 = 0; with the e−µt time dependence,

waves travel into but not out of the event horizon.

As a first step in this linear analysis, we make an assumption that will turn out to

correspond to studying heavy quarks. In the next section we will consider light quarks,

and in section 5.2, we will study the general case for a specific space-time numerically.

We assume that µ is small and accordingly expand our solution as a power series in µ:

x = x0 + µ2x1 + · · · (4.5)

where now our differential equation Lx = µ2x breaks apart into pieces Lx0 = 0 and

Lx1 = x0. The only solution for the leading term is to take x0 = A where A is a constant.

Solving now for x1 yields

x′1 =
A

gxx
√−gttguu

∫

u0

gxx√−gttguu
du (4.6)

where we have taken the lower bound of integration to be u0 to satisfy the Neumann

boundary conditions.

As a final approximation, we will take u0 to be very large so that near u = u0, the

metric components take the asymptotic form (2.2). Having taken this final limit, we can

approximately evaluate x′1(u) for u close to the horizon. The key to the evaluation is the

realization that the integral (4.6) will be dominated by its limit behavior near u = uh and

near u0. For u ≈ uh,

x′1(u) ≈ A

4πTgxx(uh)(u− uh)

(
−L2u0 +

gxx(uh)

4πT
ln(u− uh)

)
. (4.7)

Matching this result onto our definition of out-going boundary conditions yields a quasi-

normal mode condition on µ:

µ =
1

L2u0
gxx(uh) . (4.8)

We now use this result for the quasinormal mode to find an expression for the mo-

mentum loss. Identifying the endpoint of the string at u = u0 as a quark, the velocity of

the quark obeys the differential equation v̇ = −µv. In the large u0 limit, we have that the

mass is approximately Mrest ∼ u0L
2/(2πα′). Putting these two facts together, we find that

dP

dt
≈ −u0L

2

2πα′
µv = − 1

2πα′
vgxx(uh) (4.9)

in perfect agreement with the result (3.9) of the previous section for a slowly moving heavy

quark.

– 8 –
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4.1 Light quark limit

Having found an analytic expression for µ in the limit u0 →∞, we now investigate the op-

posite limit u0 → uh. As discussed in the Introduction, this limit corresponds to relatively

light quarks. In section 2, we made some assumptions about the near horizon behavior

of the metric components. To make progress here, we need to make a few additional

assumptions:

√−gttguu = 4πT (u− uh) (1 + c(u− uh) + · · · ) (4.10)

gxx = gxx(uh) + g′xx(uh)(u− uh) + · · · , (4.11)

where c is a u independent expression that depends on the details of the metric.5

Assuming a power series solution to (4.1) of the form

x(u) = (u− uh)−γ(1 +A(u− uh) + · · · ) , (4.12)

we solve for A. The result is that

A = γ

(
c+

g′xx(uh)/gxx(uh)

1− 2γ

)
. (4.13)

Our power series expression for x(u) satisfies the required out-going boundary condi-

tions at the horizon. We also require Neumann boundary conditions at the flavor brane:

x′(u0) = 0. Generically in the limit u0 → uh, we expect the first few terms in the power

series expansion for x(u) to be dominant. To satisfy Neumann boundary conditions, a

sufficient condition is the requirement that (u0 − uh)/(1 − 2γ) be held fixed in the limit

u0 → uh. In this way, there is a possibility that the second term in the power series ex-

pansion for x′(u) can cancel the first one at u = u0. But this condition tells us that the

friction coefficient in this limit must be

µ = 2πT . (4.14)

Given that in the limit u0 → ∞, µ scales as T/u0, it is tempting to speculate that

µ is a monotonically decreasing function of u0. In the example we study in section 5,

this monotone behavior holds. Given such a monotone behavior, it is tempting to go even

further and speculate that µ/T is bounded above by 2π for every AdS/CFT model of quark

damping.

4.2 Dispersion relations

Continuing our linear analysis, we attempt to establish a relationship between the energy

E and momentum P of the string assuming a time dependence of the form ẋ = −µx and

that ẋ and x′ are small.

Using the equation of motion (4.1), we can rewrite the momentum density as

π0
x = − µ

2πα′
gxxguux√−gttguu

= − 1

2πα′
1

µ
∂u
−gttgxxx′√−gttguu

. (4.15)

5Note that there may well be exotic cases where the metric does not have a regular power series expansion

near the horizon, u ≈ uh.

– 9 –
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The total momentum integral can now be evaluated

P =

∫
π0
x du = − 1

2πα′
1

µ

√−gtt
guu

gxxx
′
∣∣∣∣
u=u0

u=umin

. (4.16)

Because of Neumann boundary conditions at the flavor brane, we know x′(u0) = 0. Ideally,

we would like to take umin = uh, but there will be a divergence which we regulate by

introducing an infrared cutoff umin > uh.

We evaluate the energy in a similar fashion. Now we keep quadratic terms in the

expansion of
√
−G, anticipating a non-relativistic dispersion relation. The energy density

takes the form

π0
t = − 1

2πα′

[√−gttguu +
1

2
gxx

√−gtt
guu

(x′)2 +
1

2
gxx

√
guu
−gtt

(ẋ)2

]
. (4.17)

Integrating by parts and using the linearized equation of motion yields a simple expression

for the energy

E = −
∫
π0
t du =

1

2πα′

∫ u0

umin

√−gttguudu−
1

4πα′
gxx

√−gtt
guu

xx′
∣∣∣∣
u=umin

(4.18)

where we have used the fact that x′(u0) = 0. Using the fact that close to the horizon

x ∼ (u− uh)−µ/4πT ,

and recalling the definition of Mrest, we find that

E = Mrest +
1

2

P 2

Mkin
. (4.19)

where we have defined a kinetic mass

Mkin ≡
gxx(uh)

(2πα′)µ
. (4.20)

In other words, we have found that the quark obeys essentially the usual, non-relativistic

dispersion relation for a point particle. The only difference is that the rest mass is different

from the kinetic mass.

5. An example: The R-charged black D3-brane background

Consider the following asymptotically AdS5 metric with horizon [15]:

ds2 = −H−2/3 (πT0L)2

ρ
fdt2 +H1/3 (πT0L)2

ρ
(dx2 + dy2 + dz2) +H1/3 L2

4fρ2
dρ2 ; (5.1)

where

H =
3∏

i=1

Hi ; Hi = 1 + κiρ ; f = H− ρ2
3∏

i=1

(1 + κi) , (5.2)

– 10 –
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T0 =
r+

πL2
; κi =

qi
r2

+

, (5.3)

and with respect to the radial coordinate u of previous sections ρ = r2
+/(u

2L4). With this

change of variables in mind, note that uh = r+/L
2. The Hawking temperature of the black

hole solution is

T =
2 + κ1 + κ2 + κ3 − κ1κ2κ3

2
√

(1 + κ1)(1 + κ2)(1 + κ3)
T0 . (5.4)

This gravitational background is dual to N = 4 SU(N) Super Yang-Mills theory with

finite chemical potential for the U(1) R-charges. The chemical potentials are related to the

κi via

φi = πT0

√
2κi

1 + κi

3∏

j=1

(1 + κj)
1/2 . (5.5)

For convenience, we will express the masses and friction coefficient in terms of the κi rather

than the φi.

The black hole provides a model in which to explore the effects of chemical potential

on quark damping. We will find two interesting effects. The first is that the friction

coefficient is not a monotonic function of the chemical potential. The second is, assuming

a relativistic dispersion relation for the quark, that the friction coefficient has nontrivial

velocity dependence, unlike the zero chemical potential case studied in [1].

5.1 Moving quark

We begin with a discussion of the analytic, single quark solution discussed in section 3.

Formally, from section 3, we know that dP/dt = −C/2πα′. It is tempting to reorganize

this information assuming a relativistic, single particle dispersion relation for the quark

P =
Mkinv√
1− v2

. (5.6)

In this case, the friction coefficient µ can be expressed in terms of C as

µMkin

T 2
√
λ

=

√
1− v2

v

C

2πT 2L2
. (5.7)

To consider the small velocity limit of this analytic solution, we evaluate gxx on the

horizon:

gxx(uh) = (πT0L)2
3∏

i=1

(1 + κi)
1/3

= (2πTL)2

∏3
i=1(1 + κi)

4/3

(2 + κ1 + κ2 + κ3 − κ1κ2κ3)2
.

Since C = vgxx(uh), we find that

µMkin

T 2
√
λ

= 2π

∏3
i=1(1 + κi)

4/3

(2 + κ1 + κ2 + κ3 − κ1κ2κ3)2
(5.8)
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Figure 1: The friction coefficient as a function of κi in the small v limit. For the solid red line,

κ1 = κ, κ2 = κ3 = 0. For the dashed green line, κ1 = κ2 = κ, κ3 = 0. For the dotted blue line,

κ1 = κ2 = κ3 = κ. The domain of the plot is determined by the region of thermodynamic stability:

2− κ1 − κ2 − κ3 − κ1κ2κ3 > 0.

(a)

0.5 1 1.5 2
Κ

1.6
1.65
1.7

1.75
1.8

1.85
1.9

Μ Mkin

T2 �
Λ

(b)
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Κ1.6

1.8
2
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(c)
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Κ
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Figure 2: The friction coefficient as a function of κ for different values of v. The bottom most

curve is the small v limit. As v increases, the damping increases. Also shown, from bottom to top,

are the curves for v = 0.3, 0.5, 0.7, and 0.9: a) κ1 = κ and κ2 = κ3 = 0, b) κ1 = κ2 = κ and κ3 = 0,

c) κ1 = κ2 = κ3 = κ.

which is shown plotted in figure 1. Note that the plots are not monotone increasing

functions of the chemical potential κi. In the case where κ2 = κ3 = 0 and only κ1 is dialed,

µMkin reaches a maximum at about κ1 = 1.
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Although the formulae are messy, one can find explicit expressions for the integra-

tion constant C of the analytic, constant velocity solution and hence for the energy and

momentum loss. For example, in the case κ1 = κ2 = κ and κ3 = 0, one finds

µMkin

T 2
√
λ

=
π

2

(
(1 + κ)2(1 + κ(2 + v2κ))

1 + κ+
√

1− v2κ

)1/3

. (5.9)

This expression has the small κ expansion

µMkin

T 2
√
λ

=
π

2

(
1 +

1

3
(3−

√
1− v2)κ+O(κ2)

)
. (5.10)

and the small v expansion

µMkin

T 2
√
λ

=
π

2
(1 + κ)2/3

(
1 +

1

6
κv2 +O(v4)

)
. (5.11)

Another simpler case is κ1 = κ and κ2 = κ3 = 0, for which we find

µMkin

T 2
√
λ

=
21/62π(1 + κ)5/3

(2 + κ)2
(

2 + 2κ+ κ2 − v2κ2 + κ
√

(1− v2)((2 + κ)2 − v2κ2)
)1/6

. (5.12)

This expression has the small κ expansion

µMkin

T 2
√
λ

=
π

2

(
1 +

1

6
(3−

√
1− v2)κ+O(κ2)

)
, (5.13)

and the small v expansion

µMkin

T 2
√
λ

= 2π
(1 + κ)4/3

(2 + κ)2

(
1 +

κ

6(2 + κ)
v2 +O(v4)

)
. (5.14)

While the κi = 0 result for µMkin is independent of the velocity, interestingly, nonzero

chemical potential introduces a nontrivial dependence of µ on v. As v increases, as is clear

from figure 2, µ increases.

Before moving on to an analysis of the quasinormal modes for our string, we consider

the relativistic limit v → 1 of (5.9) and (5.12). Both of these expressions for µMkin approach

a finite limit as v → 1. In the case κ1 = κ2 = κ and κ3 = 0, we find

µMkin

T 2
√
λ

=
π

2
(1 + κ)

(
1− κ

√
1− v2

3(1 + κ)
+O(1− v2)

)
(5.15)

while in the case κ1 = κ and κ2 = κ3 = 0, we get

µMkin

T 2
√
λ

=
2π(1 + κ)3/2

(2 + κ)2

(
1− κ

√
1− v2

6
√

1 + κ
+O(1− v2)

)
. (5.16)

Although µMkin is finite in the relativistic limit, the derivative of µ with respect to v

diverges at v = 1 for nonzero chemical potential.
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5.2 Quasinormal modes

We were not able to solve analytically the linearized equation of motion (4.1) for the

string in this black hole background. However, we were able to find µ as a function of

u0 numerically. A simple shooting algorithm suffices. At a point close to the horizon

u = (1 + ε)uh, we use (4.12) to enforce the out-going boundary conditions. For various

values of µ we integrate (4.1) out to the flavor brane u = u0. By refining the choice of µ,

we locate the value that satisfies Neumann boundary conditions x′(u0) = 0.

In figure 3, we plot the friction coefficient as a function of Mrest for various choices

of κi. We have introduced ∆m =
√
λT/2 to plot a dimensionless quantity for Mrest. As

predicted from the analysis of section 4, µ→ 2πT in the limit u0 → uh. The plots are also

consistent with the prediction that µ scales as 1/u0 in the large u0 limit. In between these

two limits, µ is a monotone decreasing function of u0, lending credence to our hypothesis

that µ is bounded above by 2πT for small v.
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Dm

0.25
0.5
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1

1.25
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1.75
2

Μ
Π T

(b)

5 10 15 20
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0.05

0.1

0.15

0.2

DΜ
Π T

(c)

1 2 3 4 5 6 7 8
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1

1.25
1.5

1.75
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Μ
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(d)
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0.1

0.15

DΜ
Π T

Figure 3: The friction coefficient as a function of Mrest for different values of κ. Plots (a) and (b)

have κ = κ1 = κ2 and κ3 = 0. Plots (c) and (d) have κ = κ1 = κ2 = κ3. Plot (a) shows from

bottom to top κ = 0, 1/2, and 1. Plot (c) shows from bottom to top κ = 0 and κ = 0.596. Plots

(b) and (d) are the difference between the top and bottom curve in (a) and (c) respectively.
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Figure 4: Here κ2 = κ3 = 0 and κ1 = κ. Plot (a) is the difference Mkin(κ=2) −Mkin(κ=0) as a

function of Mrest. Plot (b) is the difference in µ for the same choices of κ.
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